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I.  INTRODUCTION 

The SYCL standard specifies a cross-platform abstraction 
layer that enables programming of heterogeneous computing 
systems using standard C++ [1 ]. In the Open Computing 
Language (OpenCL) programming model, host and device 
codes are written in different languages [2 ]. To improve 
development productivity and performance portability, the 
SYCL programming model combines host and device codes 
for an application in a type-safe way. 

In this report, we are interested in applying the SYCL 
programming model to a computationally intensive routine 
derived from the Hardware Accelerated Cosmology Code 
(HACC) framework for a study on performance portability on 
a heterogeneous computing device. We use Intel® OneAPI 
toolkit [3] to build the OpenCL and SYCL programs, and 
evaluate the performance of both implementations on Intel® 
integrated GPUs. 

We find that the SYCL implementation can achieve the 
same performance as the OpenCL implementation after we 
specify a target backend for the compiler to build the SYCL 
program in offline compilation. Without the specification of a 
target backend, the runtime will have to compile intermediate 
device codes for a target platform. Such runtime overhead 
may become significant compared to the execution of a kernel 
on a target device. As the kernel routine is compute-bound, we 
evaluate the impact of the number of compute units upon the 
kernel’s raw performance using two GPUs. When the 
hardware resource is not underutilized, we can obtain almost 
linear performance speedup from 48 compute units to 72 
compute units in offline compilation, which indicates that the 
number of compute units on a GPU are important to 
improving the raw performance of a compute-bound kernel. 
The experimental results show that SYCL is a promising 
programming model for heterogeneous computing. 

The remainder of the report is organized as follows: In 
Section II, we describe the SYCL programming model, the 
steps to map an OpenCL program to a SYCL program, and 
the architecture of an integrated GPU. Section III introduces 
the kernel routine, and presents the OpenCL and SYCL 
implementations of the kernel. In Section IV, we evaluate the 
performance of the implementations on the GPUs. Section V 
concludes the report. 

II. BACKGROUND 

A. SYCL 

Many C++ programming models for hardware 
accelerators, such as C++ AMP, CUDA, Thrust C++, are 
single source [4]. Such languages are easy to use and can be 
type-checked as everything is in one source file. They 
facilitate offline compilation so that the binary can be checked 

at compile time. A SYCL program, which is based on a single-
source C++ model as shown in Figure 1, can be compiled for 
a host while kernel(s) are extracted from the source and 
compiled for a device. A SYCL device compiler parses a 
SYCL application and generates intermediate representations 
(IR). A standard host compiler parses the same application to 
generate native host code. The SYCL runtime will load IR at 
runtime, enabling other compilers to parse it into native device 
code. Hence, the flow allows people to continue to use 
existing toolchains for a host platform, and choose preferred 
device compilers for a target platform.   

The design of SYCL allows for the combination of the 
performance and portability features of OpenCL and the 
flexibility of using high-level C++ abstractions. Most of the 
abstraction features of C++, such as templates, classes, and 
operator overloading, are available for a kernel function in 
SYCL. Some C++ language features, such as virtual 
functions, virtual inheritance, throwing/catching exceptions, 
and run-time type-information, are not allowed inside kernels 
due to the capabilities of the underlying OpenCL standard. 
These features are available outside kernel scope.  

A SYCL application is logically structured in three scopes: 
application scope, command-group scope, and kernel scope. 
The kernel scope specifies a single-kernel function that will 
be executed on a device after compilation. The command-
group scope specifies a unit of work that will comprise of a 
kernel function and buffer accessors. The application scope 
specifies all other codes outside of a command-group scope. 
A SYCL kernel function may be defined by the body of a 
lambda function, by a function object or by the binary 
generated from an OpenCL kernel string. Although an 
OpenCL kernel is interoperable in the SYCL programming 
model, in this report we focus on the implementation of kernel 
functions using lambda functions. 

 
 

Figure 1. SYCL is a single-source programming model 



 

 

Table I lists the steps of creating an OpenCL application 
and their corresponding steps in SYCL. The first three steps 
in OpenCL are reduced to the instantiation of a device selector 
class in SYCL. A selector searches a device of a user’s 
provided preference (e.g., GPU) at runtime. The SYCL queue 
class is an out-of-order queue that encapsulates a queue for 
scheduling kernels on a device. A kernel function in SYCL 
can be invoked as a lambda function. The function is grouped 
into a command group object, and then it is submitted to 
execution via command queue. Hence, steps 6 to 10 in 
OpenCL are mapped to the definition of a lambda function 
and submission of its command group to a SYCL queue. Data 
transfer between host and device can be implicitly realized by 
SYCL accessors, and the event handling can be handled by 
SYCL event class. Releasing the allocated sources of queue, 
program, kernel, and memory objects in SYCL is handled by 
the runtime which implicitly calls destructors inside scopes. 
Compared to the number of OpenCL programming steps, the 
SYCL programming model reduces the number of 
programming steps by half with higher abstractions, 
offloading the burden of managing OpenCL devices, program 
objects, kernels, and memory objects to a compiler. 

B. Integrated GPU 

While mainstream integrated GPUs are produced by 
ARM, Intel®, and NVIDIA, we give a summary of the 
architecture of an Intel® integrated GPU on which we obtain 
our experimental results. Such class of GPUs, with a central 
processing unit (CPU) and a GPU integrated on the same chip, 
is commonly used in laptops, desktop computers, and low-
cost servers. While they are not designed to outperform 
discrete GPUs due to the power, area, and thermal constrains, 
there is a need to have a good knowledge of a processor with 
an integrated GPU. 

This kind of GPU connects to CPU cores via a ring 
interconnect, and they share main memory with CPU cores. 
To reduce data access latency from main memory, an 
integrated GPU maintains a memory hierarchy comprised of 
register files, instruction and data caches. Some products 
include an embedded DRAM (eDRAM) behind a last-level 
cache to further reduce latency to system memory for higher 
effective bandwidth. The building block of the graphics 

compute architecture is the execution unit (EU). It is a 
combination of simultaneous multi-threading and fine-
grained interleaved multi-threading. Each EU can run seven 
threads concurrently to hide memory access latency. Each 
thread has 128 SIMD-8 32-bit registers. Each EU can co-issue 
to four instruction processing units (IPUs) including two 
floating-point units (FPUs), a branch unit for branch 
instructions, and a message unit for memory operations, 
sampler operations, and other longer-latency system 
communications. Each FPU supports both floating-point and 
integer operations, and can execute up to four 32-bit floating-
point or integer operations. However, only one FPU provides 
support for transcendental math functions and double-
precision floating-point operations. 

From the perspective of an OpenCL kernel, multiple 
kernel instances, which are equivalent to OpenCL work-items, 
are executed simultaneously within a hardware thread. For a 
SIMD-16 compile of a kernel, 112 kernel instances can be 
executing concurrently on an EU. If there is a divergent 
branch in one or more kernel instances, an EU’s branch unit 
keeps track of such divergence and generates masks to control 
which instances need to execute the branch.  

Arrays of EUs are organized as a subslice. The number of 
EUs per subslice depend on the generation of compute 
architecture. Each subslice contains a thread dispatcher unit 
and supporting instruction caches. In addition, it includes a 
sampler unit for sampling texture and image surfaces, and a 
data port memory management unit for a variety of general-
purpose buffer accesses, scatter/gather operations, as well as 
shared memory accesses. Subslices are grouped into slices. In 
general, a slice has three subslices, but the number of slices 
depend on products and their generations. A slice integrates 
additional logics for thread dispatch routing, banked L3 data 
cache, banked shared memory, and fixed function logic for 
atomics and barriers. 

III. IMPLEMENTATIONS OF HACCMK KERNEL  

The HACCmk kernel is publicly available in the CORAL 
benchmark suite [5]. The size of the kernel is approximately 
250 lines of code. The kernel consists of two loops: the outer 

loop, which is parallelized with the OpenMP directive omp 

parallel for [ 6 ] iterates over the particles. Each 
iteration contains a function call to the major computational 
kernel. The function contains a loop over particles for 
computing the short-forces between the particles. The forces 
are computed with single-precision floating-point operators. 
As the kernel has two nested loops over all the particles, the 
complexity of the algorithm is O(n2). A summary of the 
kernel is available in [7]. In the following sections, we will 
focus on the implementation of the HACCmk kernel using 
SYCL and OpenCL.  

A. OpenCL Kernel Program 

As shown in Listing 1, the implementation of the OpenCL 
kernel is a parallel design in which each work-item 
corresponds to the workload of an iteration of the outer loop. 

TABLE I.  MAPPING FROM OPENCL TO SYCL 

Step OpenCL SYCL 

1 Platform query 

Device selector class 2 Device query of a platform 

3 Create context for devices 

4 Create command queue for context Queue class 

5 Create memory objects Buffer class 

6 Create program object 

Lambda expressions 
7 Build a program 

8 Create kernel(s) 

9 Set kernel arguments 

10 
Enqueue a kernel object for execution 

Submit a SYCL kernel 

to a queue 

11 Transfer data from device to host Implicit via accessors 

12 Event handling Event class 

13 Release resources Implicit via destructor 

 

 



 

 

Hence, it is an N-dimensional range kernel whose global 
work size (i.e., the number of work-items) is equal to the 
number of particles specified in the outer loop. We refer to 
this value as “nParticles”. These work-items in the global 
work space can execute independently with each other. 

Compared to the original kernel written in C, the function 
signature is modified to be compatible with OpenCL kernel 

syntax; xx1, yy1, zz1, mass1, vx2, vy2, vz2 arrays are 
specified in the global memory address space with 

__global. The restrict keyword is added for each 
global memory address pointer to prevent the compiler from 
creating unnecessary memory dependencies between non-
conflict memory load and store operations. Each unique 
work-item is identified by querying the OpenCL API 
function. The “Step10” subroutine in the original kernel is 
flattened into the OpenCL kernel. 

B. SYCL Kernel Program 

Listing 2 shows the SYCL implementation of the 
HACCmk kernel under the scope of command group. The 
function object is given a command group handler object 

(cgh) to perform all the necessary work required to process 
data on a device using a kernel. The group of commands for 
data transferring and processing is enqueued as a command 

1  q.submit([&](cl::sycl::handler& cgh) { 

2    auto acc_m      =  

       buf_m.get_access<sycl_read>(cgh); 

3    auto acc_fsrmax =  

       buf_fsrmax.get_access<sycl_read>(cgh); 

4    auto acc_mp_rsm =  

       buf_mp_rsm.get_access<sycl_read>(cgh); 

5    auto acc_fcoeff =  

       buf_fcoeff.get_access<sycl_read>(cgh); 

6    auto acc_xx     =  

       buf_xx.get_access<sycl_read>(cgh); 

7    auto acc_yy     =  

       buf_yy.get_access<sycl_read>(cgh); 

8    auto acc_zz     =  

       buf_zz.get_access<sycl_read>(cgh); 

9    auto acc_mass   =  

       buf_mass.get_access<sycl_read>(cgh); 

10   auto acc_vx2    = 

       buf_vx2.get_access<sycl_read_write>(cgh); 

11   auto acc_vy2    =  

       buf_vy2.get_access<sycl_read_write>(cgh); 

12   auto acc_vz2    =  

       buf_vz2.get_access<sycl_read_write>(cgh); 

13   cgh.parallel_for<class HACCmk>(nParticles, 

                            [=](cl::sycl::id<1> i) { 

14     const float ma0 = 0.269327f; 

15     const float ma1 = -0.0750978f; 

16     const float ma2 = 0.0114808f; 

17     const float ma3 = -0.00109313f; 

18     const float ma4 = 0.0000605491f; 

19     const float ma5 = -0.00000147177f; 

20     float dxc, dyc, dzc, m, r2, f, xi, yi, zi; 

21     xi = 0.f; yi = 0.f; zi = 0.f; 

22     float xxi = acc_xx[i]; 

23     float yyi = acc_yy[i]; 

24     float zzi = acc_zz[i]; 

25     float fsrrmax2 = acc_fsrmax[0]; 

26     float mp_rsm2 = acc_mp_rsm[0]; 

27     float fcoeff2 = acc_fcoeff[0]; 

28     int   count = acc_m[0]; 

29     for ( int j = 0; j < count; j++ ) { 

30       dxc = acc_xx[j] - xxi; 

31       dyc = acc_yy[j] - yyi; 

32       dzc = acc_zz[j] - zzi; 

33       r2 = dxc * dxc + dyc * dyc + dzc * dzc; 

34       if ( r2 < fsrrmax2 ) m = acc_mass[j];  

35       else m = 0.f; 

36       f = r2 + mp_rsm2; 

37       f = m * ( 1.f / ( f * cl::sycl::sqrt( f ) )  

             – ( ma0 + r2*(ma1 + r2*(ma2 +  

             r2*(ma3 + r2*(ma4 + r2*ma5)))))); 

38       xi = xi + f * dxc; 

39       yi = yi + f * dyc; 

40       zi = zi + f * dzc; 

41     } 

42     acc_vx2[i] = acc_vx2[i] + xi * fcoeff2; 

43     acc_vy2[i] = acc_vy2[i] + yi * fcoeff2; 

44     acc_vz2[i] = acc_vz2[i] + zi * fcoeff2; 

45   }); 

46 }); 

 

Listing 2. Implementation of the HACCmk kernel routine in SYCL 

 

kernel void haccmk(const int count, 

                   const float fsrrmax2, 

                   const float mp_rsm2, 

                   const float fcoeff, 

                   global float* restrict xx1, 

                   global float* restrict yy1, 

                   global float* restrict zz1, 

                   global float* restrict mass1, 

                   global float * restrict vx2, 

                   global float * restrict vy2, 

                   global float * restrict vz2 ) 

{ 

  const float ma0 = 0.269327f; 

  const float ma1 = -0.0750978f; 

  const float ma2 = 0.0114808f; 

  const float ma3 = -0.00109313f; 

  const float ma4 = 0.0000605491f; 

  const float ma5 = -0.00000147177f; 

 

  int i  = get_global_id(0); 

  float dxc, dyc, dzc, m, r2, f, xi, yi, zi; 

  xi = 0.f; 

  yi = 0.f; 

  zi = 0.f; 

  float xxi = xx1[i]; 

  float yyi = yy1[i]; 

  float zzi = zz1[i]; 

  for ( int j = 0; j < count; j++ ) { 

    dxc = xx1[j] - xxi; 

    dyc = yy1[j] - yyi; 

    dzc = zz1[j] - zzi; 

    r2 = dxc * dxc + dyc * dyc + dzc * dzc; 

if ( r2 < fsrrmax2 ) m = mass1[j];  

else m = 0.f; 

f = r2 + mp_rsm2; 

f = m * ( 1.f / ( f * sqrt( f ) ) –  

    ( ma0 + r2*(ma1 + r2*(ma2 + r2*(ma3 +  

      r2*(ma4 + r2*ma5)))))); 

    xi = xi + f * dxc; 

    yi = yi + f * dyc; 

    zi = zi + f * dzc; 

  } 

  vx2[i] = vx2[i] + xi * fcoeff; 

  vy2[i] = vy2[i] + yi * fcoeff; 

  vz2[i] = vz2[i] + zi * fcoeff; 

} 

Listing 1.  The HACCmk kernel in OpenCL 



 

 

group on a device. A command group is submitted to a SYCL 
command queue for execution.  

A SYCL buffer differs from an OpenCL buffer in that it 
can handle both storage and ownership of data. A device 
accessor in SYCL allows a kernel, which is defined in a 
lambda function, to access data stored in a device buffer. 
Accesses to the buffers are controlled via device accessors 

constructed through the get_access method of the buffers 

(lines 2-12). For brevity, we use sycl_read and 

sycl_read_write to represent the access mode 

cl::sycl::access::mode::read and 

cl::sycl::access::mode::read_write, 
respectively. In the kernel function, the identifiers of global 

work-items are retrieved with the member functions of the id 
class (line 13). The floating-point math function (line 36) 
needs to be qualified in the SYCL namespace to tell a SYCL 
compiler that the math function, which is not confused with 
the math function called on a host, will be executed on a 
device. Overall, it is relatively straightforward to port an 
OpenCL application to a SYCL application by following the 
steps listed in Table I. 

IV. EXPERIMENT 

A. Setup 

We choose two server platforms in our experiment. One 
server has an Intel® Xeon® E3-1284L v4 CPU running at 2.9 
GHz. The CPU has four cores and each core supports two 
threads. The integrated GPU is Broadwell GT3e, Generation 
8.0. It contains 48 execution units, and each execution unit 
corresponds to a compute unit in the OpenCL programming 
model. The maximum dynamic frequency of the GPU is 1.15 
GHz. The other server has an Intel® Xeon® E3-1585 v5 CPU 
running at 3.5 GHz. The CPU also has four cores and each 
core supports two threads. The integrated GPU is Skylake 
GT3e, Generation 9.0. It contains 72 execution units. The 
maximum dynamic frequency of the GPU is 1.15 GHz. A few 
details of the two GPUs are listed in Table II.  

For the GPU compute runtime, the device version is 
OpenCL 2.1 NEO and the driver version 19.43.14583. The 
maximum work-group size on the GPUs is 256. Empirical 
results show that the runtime can select an appropriate work-
group size; therefore we have the OpenCL implementation 
determine how to break the global work-items into 
appropriate work-group instances. In our test, the number of 
particles iterated in the inner loop is not fixed at 15,000. We 
will evaluate the impact of the inner loop count upon the 
application performance. 

We build the OpenCL and SYCL programs using the 
Intel® OneAPI toolkit [3] released recently. The SYCL 
compiler supports two compilation modes. It can compile 
device code into a device-agnostic form that can run on any 
compatible devices. This is known as online compilation as 
the device-agnostic code is compiled into a device-specific 
form at runtime. In addition, the compiler allows production 
of device-specific code at compile time. This process is known 
as offline compilation. We compile both programs using the 
optimization option “-O3”. Besides the OpenCL just-in-time 
(online) compilation, we use an OpenCL offline compiler to 
generate an intermediate representation from the kernel for 
offline compilation.  

We measure the elapsed time of executing the host 
application as our performance metric. The host application 
includes the initialization of OpenCL/SYCL runtime, the 
construction of device buffers, data transfers from the host to 
device, kernel execution on the device, and the return of 
results from the device to host. The construction and 
initialization of host buffers, and checking the status after 
invoking each OpenCL built-in function are not included in 
timing. We do not just consider kernel execution time on a 
device as the performance metric due to the potentially 
significant offloading overhead.  

B. Experimental Results 

We are interested in evaluating the impact of inner loop 
count upon the performance of the application on the two 
GPUs. Hence, in our test the global work size is 256 and the 
number of particles iterated in the inner loop ranges from 
1,875 to 60,000.  

Table III shows the execution time in millisecond of the 
OpenCL and SYCL applications after the program is TABLE II.  SUMMARY OF THE TWO GPUS 

Parameter 
Iris™ Pro 

Graphics P580  

Iris™ Pro 

Graphics P6300 

Generation Gen9 (Skylake) Gen8 (Broadwell) 

Technology 14 nm 14 nm 

Base Freq. 0.35 GHz 0.3 GHz 

Max Dynamic Freq. 1.15 GHz 1.15 GHz 

Embedded DRAM 128 MB 128 MB 

Slices/Subslices 3/9 2/6 

Execution Units  72 48 

Max GFLOPS 1325 883 

 

TABLE III.  THE EXECUTION TIME IN MILLISECOND ON THE P580 GPU. 
THE GLOBAL WORK SIZE IS 256.  

ILP 
OpenCL 

(online) 

OpenCL 

(offline) 

SYCL 

(online)  

SYCL 

(offline) 

1.875K 217 1.3 81 1.2 

3.75K 218 2.2 82 2.1 

7.5K 221 3.7 84 3.8 

15K 223 7.2 87 7.1 

30K 231 14 94 13.6 

60K 244 27 107 26 

 



 

 

compiled using the offline and online modes on the P580 
GPU. While the execution time of both programs is almost the 
same in offline compilation, the SYCL program is on average 
2.5X faster than the OpenCL program in online compilation. 
On the other hand, the execution time is approximately linear 
with the inner loop count (ILP) when the overhead of 
compiling IR for the target GPU is eliminated in offline 
compilation. 

Table IV shows the execution time in millisecond of the 
OpenCL and SYCL applications after the program is 
compiled using the offline and online modes on the P6300 
GPU. The execution time of both programs is almost the same 
in offline compilation. The SYCL program is on average 2.9X 
faster than the OpenCL program in online compilation. The 
execution time of the OpenCL and SYCL programs in online 
compilation is on average 20% and 5.5% longer than that on 
the P580 GPU, respectively. The execution time is also 
approximately linear with the ILP when the compilation 
overhead is eliminated in offline compilation. 

The results show that the overhead of online compilation 
can become significant compared to the offline compilation 
and/or kernel execution. Comparing the execution time in 
offline compilation on the two GPUs, we do not observe any 
performance improvement though the P580 GPU has 1.5X 
more execution units. This indicates that executing 256 work-
items does not fully utilize 72 execution units on the GPU. 

Table V shows the execution time in millisecond of the 
OpenCL and SYCL applications when the global work size is 
8,192 and the ILP is fixed at 15,000. Due to the significant 
overhead of online compilation, the speedup is approximately 
1.2. However, the performance speedup is close to 1.5 in 
offline compilation. Assuming the execution units are fully 
utilized, the number of compute units on a GPU are important 
to improving the raw performance of a compute-bound kernel. 

V. CONCLUSION 

Unlike OpenCL, SYCL is a single-source programming 
model that allows kernel codes to be embedded in host codes. 
In this report, we describe the SYCL programming model and 
list the migration steps from OpenCL to SYCL. While the 
transformation is relatively straightforward given that the 
SYCL programming model is an extension to OpenCL, 

understanding buffer accessors, kernel execution model, and 
program scopes is important for the smooth transformation of 
the applications. When comparing the offline and online 
compilations, we find that the overhead of online compilation 
may become significant compared to offline compilation and 
kernel execution on a device. However, the SYCL 
implementations are as fast as the OpenCL implementations 
in offline compilation on the GPUs. In addition, the number 
of execution units is important to the performance of a 
compute-bound kernel when the kernel can fully utilize 
hardware resources on a GPU. 

SYCL is a promising programing model in terms of 
performance portability and programming productivity. The 
maturing SYCL compiler will continue to promote 
performance, portability, and productivity.  
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TABLE IV.  THE EXECUTION TIME IN MILLISECOND ON THE P6300 

GPU. THE GLOBAL WORK SIZE IS 256. 

ILP 
OpenCL 

(online) 

OpenCL 

(offline) 

SYCL 

(online)  

SYCL 

(offline) 

1.875K 264 1.1 85 1.1 

3.75K 264 1.8 88 1.9 

7.5K 268 3.5 89 3.5 

15K 269 6.7 92 6.8 

30K 275 13.2 98 13.3 

60K 289 26.3 112 26.3 

 

TABLE V.  COMPARISON OF THE EXECUTION TIME ON THE TWO 

GPUS. THE GLOBAL WORK SIZE IS 8192 AND THE ILP IS 15,000. 

GPU 
OpenCL 

(online) 

OpenCL 

(offline) 

SYCL 

(online)  

SYCL 

(offline) 

P6300 275 12.7 97 12.4 

P580 225 8.9 89 8.5 

Speedup 1.2 1.4 1.1 1.5 
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